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Abstract A minimum cost shortest-path tree is a tree that connects the source with every
node of the network by a shortest path such that the sum of the cost (as a proxy for length)
of all arcs is minimum.

In this paper, we adapt the algorithm of Hansen and Zheng (Discrete Appl. Math. 65:275–
284, 1996) to the case of acyclic directed graphs to find a minimum cost shortest-path tree
in order to be applied to the cost allocation problem associated with a cooperative minimum
cost shortest-path tree game. In addition, we analyze a non-cooperative game based on the
connection problem that arises in the above situation. We prove that the cost allocation given
by an ‘à la’ Bird rule provides a core solution in the former game and that the strategies that
induce those payoffs in the latter game are Nash equilibrium.

Keywords Operations research games · Core solution · Nash equilibrium

1 Introduction

The concept of spanning tree is of major importance when constructing network models that
connect a set of users to a source using the smallest amount of resources. When the total cost
to connect all nodes (including the source) is minimized, the focus is on the identification
of minimum cost spanning trees. However, when the objective is to find the set of arcs
connecting all the nodes such that the sum of the arc costs (as a proxy for length) from
the source to each node is minimized, we consider a minimum cost shortest-path tree. The
study of both types of trees has been an important area of research. A number of efficient
algorithms have been developed to construct minimum cost trees (see Wu and Chao 2004 for
a survey). Both types of trees have been widely used by communication companies in circuit
design, cable T.V. networks, etc. (see Bharath-Kumar and Jaffe 1983; Borm et al. 2001;
Marín 2007; Wu and Chao 2004).
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We are interested in the minimum cost shortest-path tree problem (see Hansen and Zheng
1996). A minimum cost shortest-path tree is a tree that connects the source to every node
of the network by a shortest path such that the sum of the cost of all arcs is minimum.
Shortest-path trees from the source to each node may not be unique. Further, minimum cost
shortest-path trees may not be unique.

For routing problems, all shortest-path trees from the origin to any node are equivalent.
However, trees with a minimum total length are interesting to be considered for building
problems.

This class of problems appears in location models when (in a network) we want to con-
nect the users to the distribution center at the minimum cost. Besides, the minimum cost
shortest-path tree also provides a good approximation to the minimum routing cost span-
ning tree problem using the median node of the network as a source node for the tree (see
Wu and Chao 2004).

Apart from the design of minimum cost networks, other interesting issues usually arise
with these problems. For example, we may consider the problem of allocating the cost of
the networks among the users, then the situation can be modeled as a game (see Borm et
al. 2001; Curiel 1997; Fragnelli et al. 2000; Granot and Huberman 1981; Voorneveld and
Grahn 2002).

From a game theory perspective we may explore two situations for the allocation of costs
in spanning trees. In a cooperative environment, all the agents cooperate to develop a stable
allocation of costs. However, the agents can act in a non-cooperative way. In this case, the
agents will adopt strategies that are crucial to the outcome of the game.

The rest of the paper is organized as follows. In the next section, we adapt the algorithm
in Hansen and Zheng (1996) to find the minimum cost shortest-path tree (MCSPT) in a
connected acyclic graph. In Sect. 3, we study a cooperative game to allocate the total cost of
the tree among the agents. Finally, in Sect. 4 we investigate the allocation of the cost of the
tree among the agents using a non-cooperative multi-stage game. The payoffs for the agents
given by the strategies of the non-cooperative game coincide with the cost allocations in the
cooperative game, so the non-cooperative solutions can be interpreted as implementations
of the cooperative solutions.

2 The minimum cost shortest-path tree problem

Let G = (N0,A) be an acyclic digraph that has at least one spanning tree as a subgraph,
N0 = N ∪ {0}, where 0 denotes the source node (or the common supplier), N = {1, . . . , n}
the rest of the nodes, and A the set of arcs, A ⊂ N0 × N0.

We denote by lij the cost (which is a proxy for length) of arc (i, j) ∈ A. We assume
lij ≥ 0 for all (i, j) ∈ A.

A spanning tree T (S), S ⊂ N0, rooted at 0 is an acyclic graph with a unique path from
0 to every node j , j ∈ S. For the sake of simplicity let A(S) be its set of arcs. Therefore,
T (S) = (S ∪ {0},A(S)). A spanning tree of a connected graph G is a spanning tree T (N)

containing all the nodes N0 in G.
A shortest-path tree TS , S ⊂ N0, rooted at 0 is a spanning tree such that the length, π∗(j),

of the path from 0 to j , ∀j ∈ S, is the shortest length among all the paths from 0 to j in G.
Let AS be the set of its arcs. So, TS = (S ∪ {0},AS).

The cost, c(TS), associated with a tree TS , is the sum of the costs of all its arcs:

c(TS) =
∑

(i,j)∈AS

lij .
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A minimum cost shortest-path tree (MCSPT) of the graph G is a shortest-path tree TN

for G such that c(TN) is minimum.
In Hansen and Zheng (1996) one can find an algorithm to search for a minimum cost

shortest-path tree. Our goal is to adapt that algorithm, based on a recursion ‘à la’ Bellman,
that will be useful later on when analyzing the cooperative game on Sect. 3. We have intro-
duced this adaptation for the sake of completeness, because our version of the algorithm will
be essential later on to understand the construction. The process takes n steps to determine
the total cost associated with an optimal tree that has the shortest-path from node 0 to every
node of the graph. This results in a sequence of optimal subtrees with costs in nondecreasing
order.

For the sake of presentation, let �−1
ik

= {i ∈ N0 : (i, ik) ∈ A}, i.e. the set of predecessors
of ik (see Gondran and Minoux 1984).

We number the nodes of the graph with a numbering compatible with the precedence
relationship of A. (Any numbering compatible with the precedence relationship would be
valid.) This allows us to construct the following sequence:

S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ · · · ⊂ Sn. (2.1)

S0 = {0}, S1 = {0, i1}, where i1 is a node whose unique predecessor is the origin,
S2 = S1 ∪ {i2}, where i2 is a node for which all its predecessors are in S1, and, in general,
Sk = Sk−1 ∪ {ik}, where ik is a node for which all its predecessors lie in Sk−1, and so on until
Sn = {0,1, . . . , n}. The reader may note that there are many sequences satisfying the above
construction, depending on the choice of the node at each step. The validity of our approach
is independent of the chosen sequence.

Using a sequence introduced in (2.1), we define the optimality relation as:

π∗(0) = 0; TS0 = (S0,∅) (2.2)

and for any k > 0:

π∗(ik) = min
i∈�−1

ik

{liik + π∗(i)}; TSk
= (Sk,ASk−1 ∪ {(i∗

k , ik)}) (2.3)

where i∗
k is a single node, that can be arbitrarily chosen among all the î∗

k ∈ arg min
i∈�−1

ik

{liik +
π∗(i)}. Let us define A(ik) = {(î∗

k , ik) : î∗
k ∈ arg min

i∈�−1
ik

{liik + π∗(i)}} being the set of arcs

verifying lî∗
k
,ik

= π∗(ik) − π∗(î∗
k ).

It is well-known (see Gondran and Minoux 1984; Wu and Chao 2004), that TSn is a
shortest-path tree on G, and π∗(k) is the length of any shortest-path from the origin 0 to the
node k, k = 1, . . . , n.

Moreover, we prove that if we choose the node i∗
k satisfying

li∗
k
ik ≤ liik , ∀i ∈ arg min

i∈�−1
ik

{liik + π∗(i)} (2.4)

the above procedure also determines a minimum cost shortest-path tree of G. Let A∗
ik

be the
set of arcs in A(ik) that satisfy (2.4).

Theorem 2.1 The sequence of arcs (i∗
k , ik), k = 1, . . . , n, determined by (2.2), (2.3) and

(2.4) results in a minimum cost shortest-path tree TSn of G.

Proof Let TSn be a tree determined by the above procedure, and let us assume that there
exists another shortest-path tree, T ∗, for which c(T ∗) < c(TSn).
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Fig. 1 Distribution graph and
shortest-paths on the graph

To each node of any tree of the graph G we associate a label given by the length of the arc
incident to it in the unique path from the origen to it on the tree. Then, since c(T ∗) < c(TSn)

it must exist, at least, one node i with a label, lj∗i , given by T ∗, that has smaller label than
the one given by TSn , lĵ i , i.e. lj∗i < lĵ i .

As T ∗ is a shortest-path tree, it can be obtained using the principle of optimality by a
recursive chain of sets S∗

l of the graph G satisfying (2.1) (see Wu and Chao 2004). For the
above node i and for the two trees, T ∗ and TSn , both labels identify nodes j ∗, ĵ ∈ �−1

i that
satisfy (2.3).

Therefore

π∗(i) = lj∗i + π∗(j ∗) = lĵ i + π∗(ĵ )

but by (2.4), lĵ i satisfies lĵ i ≤ lj i , ∀j ∈ arg min
j∈�−1

i
{lj i + π∗(j)}.

Therefore the length of the arc chosen in T ∗ cannot be less than the length of the arc
in TSn . This contradiction proves that it cannot exist T ∗ defined above, and therefore TSn is
a minimum cost shortest-path tree. �

Example 2.2 Let G be the acyclic graph given in Fig. 1. The figure also gives the length of
the shortest-path from the source node 0 to each node.

Consider the following choice of the sequence defined by (2.1) on the graph in Fig. 1.

S0 = {0}, S1 = {0,1}, S2 = {0,1,2},
S3 = {0,1,2,3}, S4 = {0,1,2,3,4}, S5 = {0,1,2,3,4,5},
S6 = {0,1,2,3,4,5,6}, S7 = {0,1,2,3,4,5,6,7}.

Then, using (2.2), (2.3) and (2.4) we obtain the results described in Table 1.
The sequence of trees TSi

, i = 1, . . . ,6, in Table 1, are minimum cost shortest-path sub-
trees, and TS7 is the optimal tree. Underlined numbers, in the third column of Table 1, point
out the choices made by the algorithm in the construction of the optimal solution in case of
ties.

3 A cooperative minimum cost shortest-path tree game

The cooperative minimum cost shortest-path tree game arises when considering the problem
of allocating the costs associated with a shortest-path tree in a graph among the agents who
are located on the nodes of the graph, except for node 0 that is reserved for a common
supplier who does not participate in the cost sharing.
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Table 1 Minimum cost shortest-path sub-trees

k Sk ik {liik + π∗(i)} A(ik) π∗(ik)

0 {0} 0 0

1 {0,1} 1 {2 + 0} (0,1) 2

2 {0,1,2} 2 {2 + 0} (0,2) 2

3 {0,1,2,3} 3 {1 + 2} (1,3) 3

4 {0,1,2,3,4} 4 {1 + 3,2 + 2} (3,4), (2,4) 4

5 {0,1,2,3,4,5} 5 {1 + 4,2 + 3} (4,5), (3;5) 5

6 {0,1,2,3,4,5,6} 6 {3 + 2} (2,6) 5

7 {0,1,2,3,4,5,6,7} 7 {10 + 2,3 + 5,3 + 5} (6,7), (5,7) 8

We consider the game (N,v), where N = {1, . . . , n} is the set of players (agents).
Player i, i = 1, . . . , n, is associated with node i of the graph G = (N0,A), and the char-
acteristic function v is defined by:

v(S) = c(TS), ∅ 
= S ⊆ N, v(∅) = 0

where TS is a minimum cost shortest-path tree connecting S with the origin 0 using the arcs
in G = (N0,A). We call this class of cooperative games the Minimum Cost Shortest-Path
Tree Games (MCSPTG). The reader may note that in our approach coalitions may use any
node in the graph to get a cheapest connection as it has already been done in literature (see
Curiel 1997; Fernández et al. 2004).

Let us define the graph Gsp = (N0,Asp) as the subgraph of G such that Asp =⋃n

k=1 A(ik). We call Gsp the shortest-paths graph of G. Let (N, v̂) be the standard mini-
mum cost spanning tree game defined on the graph Gsp . (Recall that in the standard MCST
game arcs outside S ∪ {0} are not allowed to compute the characteristic function and there-
fore v̂(S) = +∞ is allowed.) Then, we consider (N,v∗), the monotonic cover of (N, v̂), as
the game on the graph Gsp , where the characteristic function v∗(S), S ⊂ N , is the cost of a
minimum cost spanning tree, T (S), in Gsp containing S ∪{0} and where arcs outside S ∪{0}
are allowed (see Curiel 1997). Note that the monotonic cover coincides with the standard
MCST game if one assume that arcs outside S can not be used to compute the value of v∗(S).
Therefore, this allows us to determine the values of v(S) in the original game in a different
way.

Theorem 3.1 The Minimum Cost Shortest-Path Tree Game (N,v) on the graph G is equiv-
alent to the monotonic cover of the Minimum Cost Spanning Tree Game (N,v∗) on the
subgraph Gsp of G.

Proof Let (N,v∗) be the monotonic cover of the Minimum Cost Spanning Tree Game on
the subgraph Gsp of G. So, for each coalition S ⊂ N , v∗(S) is the cost of a minimum cost
spanning tree, T (S), in Gsp containing S ∪ {0}.

The definition of Gsp ensures that T (S) is also a shortest-path tree, because all its arcs
satisfy the condition (2.3) since they belong to

⋃n

k=1 A(ik), thus lij = π∗(j)−π∗(i). There-
fore, the value v(S) of the Minimum Cost Shortest-Path Tree Game on G is the same as the
value v∗(S) of the monotonic cover of the Minimum Cost Spanning Tree Game on G. �
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Fig. 2 Gsp associated with G,
and T (S) for S = {2,6}

Example 3.2 This example shows the graph Gsp associated with the graph G in Fig. 2.
It clearly follows that for S = {2,6}, v(S) = 7 using the minimum cost spanning tree that

contains {0,2,6} in the subgraph Gsp .

As a consequence of Theorem 3.1, we present some corollaries that illustrate properties
for this class of games.

Corollary 3.3 The game (N,v) is monotonic.

In addition, the core of this game is not empty. Consider the cost allocation that for a
given tree, assigns to each node the cost of the incident edge on the unique path that links
this node with the root 0 of the tree. In the following, we call this allocation Birds’s cost
allocation according to Bird (1976) and Curiel (1997).

Corollary 3.4 Bird’s cost allocation belongs to the core of the game (N,v).

Nevertheless, this class of games enjoys the following interesting property.

Theorem 3.5 Bird’s cost allocation is the same allocation for all the minimum cost shortest-
path trees of the graph G.

Proof All the minimum cost shortest-path trees of the graph G are obtained via (2.2), (2.3)
and (2.4). In this procedure the values π∗(i) for all i do not depend on the optimal subtree,
nor the poset (Dusnik and Miller 1941), considered so far.

Thus in a given step, say at node j , we choose the edge according to (2.3), (2.4), and since
the value π∗(i) for all i ∈ �−1

j , is independent of the chosen subtree and the poset, the choice
of any node î ∈ arg min

i∈�−1
j

{lij + π∗(i)} satisfying l̂ij ≤ lij , ∀i ∈ arg min
�−1

j
{lij + π∗(i)},

always gives the same value, l̂ij , because otherwise π∗(j) would give different values de-
pendent of the poset which is not possible. �

4 A non-cooperative minimum cost shortest-path tree game

In many real life situations players make their decisions independently and therefore it is
important to consider the problem from a non-cooperative point of view (see Bergantiños
and Lorenzo 2004, 2005; Fernández et al. 2009; Gómez-Rúa and Vidal-Puga 2011).
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Now we describe how the players make the connections to the source in a non-
cooperative multi-stage game, �(G,c), associated with each minimum cost shortest-path
tree problem in the graph G with costs c.

Initially all players are unconnected. At the first stage, each player makes the decision
whether to connect to the source or not. If no player connects or every player connects
to the source then the game finishes. Otherwise, the game proceeds to a second stage. In
subsequent stages non-connected players face a set of players already connected and have
to decide whether to remain unconnected or to connect to one of the connected players or
to the source. The game finishes when no more players connect or when all the players are
already connected.

In each stage, when player i joins the existing tree, he has to pay the incremental cost, i.e.,
the amount of the cost due to its connection at this stage. When several players decide to join
simultaneously, each player has to pay the incremental cost, sequentially, in the numbering
of the players (nodes) that is used to identify players with nodes of the graph. Recall that
in Sect. 2 (before formula (2.1)), we fixed a numbering of the nodes compatible with the
precedence relationship of the graph. Here, we remark that an important property of optimal
trees is that any sub-tree of an optimal tree, that connects to the source, must be also an
optimal solution for the corresponding subproblem. This key observation implies that in
order to produce optimal trees, players must use shortest-path to connect to other players
and to the source. If at the end of the process, a player is still unconnected, he has to pay a
penalty that is much higher than the cost of the shortest-path to the source.

In this game, the decision of each player depends only on the set of players already
connected. Denote by 2N

0 (i) the set of all the coalitions that contain the source but not
player i, 2N

0 (i) = {S ∈ 2N
0 | i /∈ S}. Let Pi be the collection of all shortest paths from i to 0.

A strategy for player i ∈ N is a map xi : 2N
0 (i) −→ Pi ∪ {d} such that xi(S) = p means that

player i builds the subpath of p starting from the last node on path p that is a member of S

and ending at node i. We assume that no path is called ‘d’ and reserve this character for the
choice of not connecting; xi(S) = d means that player i does not build any edge when the
current tree spans S.

Let x = (xi)i∈N denote a profile of strategies of the set of players, Xi denote the set of all
possible strategies for player i, and X denote the set of all possible profiles of strategies for
the entire set of players.

A profile of strategies, x, of the game �(G,c) induces a graph that is a tree T x on a
subset S ∈ 2N

0 . This tree is a shortest-path spanning tree on S but not necessarily a minimum
cost shortest-path spanning tree on S. However, if the total cost of the resulting tree is to be
minimized, the solution should consist of a minimum cost shortest-path spanning tree on S.

In what follows, we focus on the characterization of those profiles of strategies that are
Nash equilibria and result in minimum cost shortest-path trees on N0.

To formally define these properties, we introduce the following notation. Given a profile
of strategies x for the whole set of players, N , and a subset of players S ⊂ N , denote by xS

(x−S ) the projection of x on S (N \ S) that represents the corresponding profile of strategies
for the agents in S (N \ S). By (x;x ′

S) we represent the profile of strategies in which agents
in S deviate from x by using the profile of strategies x ′, that is, (x;x ′

S)i = x ′
i for i ∈ S and

(x;x ′
S)j = xj for all j 
∈ S.

Let ci(x) denote the connection cost for agent i when a profile of strategies x is adopted.
The total cost induced by x is denoted by c(x), c(x) = ∑

i∈N ci(x). (We will slightly abuse
of notation by using ci(x) and c(x) instead of ci(T

x) and c(T x).)

Definition 4.1 The profile of strategies x ∈ X is a Nash equilibrium (NE) for the game
�(G,c), if for every agent i ∈ N , ci(x) ≤ ci(x;x ′

i ) for all x ′
i ∈ Xi , x ′

i 
= xi .
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That is, x is a NE if any deviation of agent i from the profile of strategies x does not yield
an improvement in the cost assigned to agent i. The reader may note that in this game, due
to the finiteness of the strategy space, there are always Nash equilibrium profiles, at least in
mixed strategies.

Unfortunately, a Nash equilibrium strategy does not necessarily result in a tree which is
a MCSPT. The following example shows that these two conditions are independent in the
sense that there exist strategies that results in a tree which is a MCSPT which are not NE
strategies and there are NE strategies that do not yield minimum cost shortest-path trees.

Example 4.2 For the graph in Fig. 1, we consider the joint strategy where each player j

chooses to join a tree TS if there is a player in S such that j can connect to the tree by only
one arc. In addition, in this strategy player 3 will connect only if player 4 is in S.

• In the first stage, nodes 1 and 2 are connected.
• In the second stage, nodes 4 and 6 are connected.
• Finally, in the third stage nodes 3, 5 and 7 are connected,

This strategy is a Nash equilibrium but it does not result in a minimum cost spanning tree.
There exist different joint strategies that produce optimal trees but do not result in Nash

equilibrium. We consider the joint strategy where player 7 decides to connect to the source
in the second stage, using the shortest-path 0, 1, 3, 4, 5 and 7, whereas the remaining players
connect to the tree using the shortest length incident arc at the first stage that this is possible.

• As a consequence, in the first stage players 1 and 2 connect to the source, and each one
pays two units.

• In the second stage, player 3 connects paying one unit, player 6 connects paying three
units, and player 7 connects paying five units, since he uses the nodes in an ascending
order.

• In the next stages, players 4 and 5 connect to the tree without any payment.

This strategy produces an optimal tree, but player 7 has a better payoff using different strate-
gies.

The idea underlying the strategies described in the following is that each player would
like to connect using his cheapest connection. When each player’s cheapest connection gen-
erates a shortest-path spanning tree, this tree is a minimum cost shortest-path tree. However,
in general this strategy may not yield a shortest-path spanning tree and further analysis is
necessary to identify the strategies that the players will adopt in the game.

The necessity of producing minimum cost shortest-path trees forces the players to con-
nect to the source at the stage when the cheapest connection is available to him from among
all the shortest-path feasible connections. The rationale of this condition is based on the idea
of Bellman-Ford algorithm, see Wu and Chao (2004).

Define Bi = {j ∈ N : (j, i) ∈ A∗
i , p ∪ (j, i) ∈ Pi, ∀p ∈ Pj }, i ∈ N , as the set of players

j such that player i could connect at its minimum cost to j and the union of (j, i) with any
shortest path from the source to j is also a shortest path from the source to i.

Definition 4.3 The strategy xi ∈ Xi is a Bellman strategy for player i in the game �(G,c)

if for each S ∈ 2N
0 (i)

xi(S) =
{

p ∪ (j, i) if j ∈ Bi ∩ S, p ∈ Pj , p ⊆ TS

d otherwise.
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Theorem 4.4 Bellman strategy profiles are Nash equilibria for the game � and induce a
MCSPT on N0.

The proof follows analogously to Theorem 4.3 in Fernández et al. (2009).
Note that each player connects to the tree using this strategy when there is another player

in the tree that permits him to connect at his minimum cost shortest path.

Corollary 4.5 The payoff of any Bellman strategy for the game �(G,c) coincides with the
allocation given by the Bird’s cost allocation for the MCSPTG.

The reader may note that one could also have defined the noncooperative game on the
reduced graph Gsp rather than G. In that case, the opportune moment strategies, defined in
Fernández et al. (2009), would coincide with the Bellman strategies defined above, although
clearly each class of strategies are defined on different underlying graphs.

5 Conclusion

Minimum cost spanning tree (MCST) games have been widely considered in the literature
of cooperative games because of the importance of the construction cost allocation process.
Nevertheless, the type of games considered in this paper has attracted much less attention.
In our model, the agents are primarily interested in a shortest path to the root and only
secondarily in the cost to be made to build such a path since the root has to be visited on a
regular base. This situation gives rise to a different paradigm of cost allocation process in
the graph, where the proposed solutions must be different from previous approaches.

We adapt the algorithm in Hansen and Zheng (1996) to the case of acyclic directed graphs
to find a minimum cost shortest-path tree in order to be applied to the cost allocation problem
associated with a cooperative minimum cost shortest-path tree game. Here, we prove that
the cost allocation given by an “à la’ Bird” rule provides a core solution in the cooperative
game. In addition, we analyze a non-cooperative game based on the connection problem
that arises in the above situation. Finally, we found that the strategies that induce the payoff
given by the allocation “à la’ Bird” are Nash equilibrium profiles.
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